Estimate for the Schrödinger Equation on the Half - Line ∗
نویسنده
چکیده
In this paper we prove the L p − L ´ p estimate for the Schrödinger equation on the half-line and with homogeneous Dirichlet boundary condition at the origin.
منابع مشابه
The Derivative Nonlinear Schrödinger Equation on the Half Line
We study the initial-boundary value problem for the derivative nonlinear Schrödinger (DNLS) equation. More precisely we study the wellposedness theory and the regularity properties of the DNLS equation on the half line. We prove almost sharp local wellposedness, nonlinear smoothing, and small data global wellposedness in the energy space. One of the obstructions is that the crucial gauge transf...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملṕ Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential ∗
In this paper I prove a L − L estimate for the solutions of the one–dimensional Schrödinger equation with a potential in Lγ where in the generic case γ > 3/2 and in the exceptional case (i.e. when there is a half–bound state of zero energy) γ > 5/2. I use this estimate to construct the scattering operator for the nonlinear Schrödinger equation with a potential. I prove moreover, that the low–en...
متن کاملThe Initial-boundary Value Problem for the 1d Nonlinear Schrödinger Equation on the Half-line
We prove, by adapting the method of Colliander-Kenig [9], local wellposedness of the initial-boundary value problem for the one-dimensional nonlinear Schrödinger equation i∂tu+∂ 2 x u+λu|u|α−1 = 0 on the half-line under low boundary regularity assumptions.
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کامل